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Automatic Music Transcription: Polyphonic



Multiple Pitch Estimation

● Polyphonic pitch estimation from multiple sound sources

AMT Model



Challenges

● Many sources are mixed and played simultaneously 

○ They are likely to be harmonically related in music

○ Some sources can be masked by others

○ Content changes continuously by musical expressions (e.g. vibrato) 

● Labeling is time-consuming and requires high expertise

○ Supervised learning is limited (piano transcription is a special case) 

○ Sheet music can be used as “weak” labels with the score-to-audio alignment  

○ Multi-track recording with monophonic pitch estimation 



Methods

● Iterative F0 search: DSP

● Joint source estimation: NMF

● Classification-based approach: ML/DL



Iterative F0 search

● Repeatedly finds predominant-F0 and removes its harmonic overtones

● Procedure

1. Set the original to the residual

2. Detect a predominant F0: based on the pitch templates

3. Spectral smoothing on harmonics on the detected F0

4. Cancel the smoothed harmonics from the residual

5. Repeat the step 2 & 3 until the residual is sufficiently flat

Spectral Smoothness

ECE 477 - Computer Audition, Zhiyao Duan 2014 18

Multiple Fundamental Frequency Estimation Based on Harmonicity and Spectral Smoothness, Anssi Klapuri, IEEE TASLP, 2003

Yousician



NMF-based Spectrogram Decomposition

● Spectrogram can be approximated with an additive sum of pitch 

templates and the corresponding temporal activations

[The FMP book]



NMF-based Spectrogram Decomposition

● They can be regarded as a non-negative matrix factorization

○ All elements are non-negative   

𝑉 𝑊 𝐻
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Non-Negative Matrix Factorization for Polyphonic Music Transcription, Paris Smaragdis, Judith Brown, WASPAA, 2003

𝐹 × 𝑇

𝐹
× 𝐾

𝐾
× 𝑇



Algorithm for NMF

● Defined as an optimization problem: min
𝑊,𝐻≥0

𝐷(𝑉||𝑊𝐻)

○ Euclidean: 𝐷(𝑉| ෠𝑉 = σ𝑖,𝑗(𝑉𝑖𝑗 − ෠𝑉𝑖𝑗)
2 ( ෠𝑉 ≈ 𝑊𝐻)

○ Kullback-Leibler (KL) divergence: 𝐷(𝑉| ෠𝑉 = σ𝑖,𝑗(𝑉𝑖𝑗𝑙𝑜𝑔
𝑉𝑖𝑗
෡𝑉𝑖𝑗
− ෠𝑉𝑖𝑗 + 𝑉𝑖𝑗)

● Multiplicative update rule

1. Initialize 𝑊 and 𝐻

2. Repeat   𝐻 ← 𝐻.∗
𝑊𝑇 𝑉

𝑊𝐻

𝑊𝑇 1
𝑊 ← 𝑊.∗

𝑉

𝑊𝐻
𝐻𝑇

1𝐻𝑇

3. Until convergence

4. Return 𝑊 and 𝐻

Algorithms for Non-negative Matrix Factorization, Daniel Lee, Sebastian Seung, NIPS, 2000



NMF for Polyphonic Pitch Estimation 

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8.html

● Initialize 𝑊 with harmonic template

● NMF examples

○ https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8.html (8.3) 

Random Initially 𝑊 and 𝐻 Initialize 𝑊 and 𝐻 with harmonic templates 

After updating 𝑊 and 𝐻 After updating 𝑊 and 𝐻

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C8/C8.html


Classification-based Approach

● Quantize the pitch output into discrete label vectors

● Multi-label classification 

○ 88 binary state output (note on/off)

○ Use the sigmoid output 

● No prior knowledge of musical acoustics

MIDI

88-dim. binary vector



Classification-based Multi-Pitch Estimation

● Predict the pitch saliency from multi-track instruments

○ Frame-level pitch activations in the time and pitch space

● Input representation: harmonic constant-Q transform (HCQT)

○ CQT with 60 bins per octave

○ Multiple CQTs with harmonic relations (0.5, 1, 2, 3, 4, 5)

○ Filters learn the relative weights of harmonics 

○ 3D input (time x frequency x harmonics): similar to color images (RGB)

Deep salience representations for F0 estimation in polyphonic music Rachel M. Bittner, Brian McFee, Justin Salamon, Peter Li, Juan P. Bello, ISMIR, 2017

HCQT is similar to the 

idea of harmonic product 
sum but they stack them 
as different channels



Classification-based Multi-Pitch Estimation

● 2D CNN 

○ 5x5 filter: 1 semitone, 70 x 3: one octave

○ The output layer has a sigmoid output

■ The loss is cross-entropy between the sigmoid output and the ground truth

■ They used the Gaussian blurring (smoothing) function on the ground truth

○ ReLU, batch norm, Adam optimizer

○ The input an output have the same dimensionality: no pooling layers

1 semitone

1 octave

Deep salience representations for F0 estimation in polyphonic music Rachel M. Bittner, Brian McFee, Justin Salamon, Peter Li, Juan P. Bello, ISMIR, 2017



Note-Level Transcription

● Convert continuous pitch streams into note events 

○ Use the frame-level pitch estimation

○ Explicit onset detectors can be added but they are very hard 

■ The classification-based approach is common nowadays

○ Note modeling algorithms to prune, merge, and divide frame-level predictions  
■ Rule-based approach: thresholding, median filtering 

■ Statistical approach: HMM



Onsets and Frames 

● Joint learning of onset detection and pitch estimation for polyphonic 

piano transcription

○ Two CRNN branches 
■ Onset network: detect the onset of multiple notes 

(percussive tone)

■ Frame network: detect on/off states of multiple notes 

(harmonic tone)

○ A connection from the onset prediction in the onset

network to the input of RNN in the frame network
■ Temporal causality

Onsets and Frames: Dual-Objective Piano Transcription, Curtis Hawthorne, et al, ISMIR, 2018

Website: https://magenta.tensorflow.org/onsets-frames

https://magenta.tensorflow.org/onsets-frames


Onsets and Frames 

● A simple rule is used to integrate the output of the two networks

○ Frame predictions without onset is discarded

Blue: frame prediction, Red; onset prediction
Pink: both

Yellow: True Positive, Red: False Negative 
Green: False Positive

Onsets and Frames: Dual-Objective Piano Transcription, Curtis Hawthorne, et al, ISMIR, 2018



Onsets and Frames 

● Significantly outperform the previous state-of-the-arts

○ High jump in the note-level accuracy

○ The key idea is detecting “onset” state separately

○ The following studies investigated more note states: onset, sustain, and 

offset, and even detection of the sustain pedal

Onsets and Frames: Dual-Objective Piano Transcription, Curtis Hawthorne, et al, ISMIR, 2018



Regression Onset Model  

● High-resolution piano transcription using the regression loss

○ The ground truth of onset and offset are smoothed 

using a triangular shape 

■ But, use the binary cross entropy

○ Achieve more precise onset and offset prediction

than the onsets and frames model (hop size: 32ms)

High-resolution Piano Transcription with Pedals by Regressing Onset and Offset Times, Qiuqiang Kong, et al., IEEE TASLP, 2021

Website: https://github.com/bytedance/piano_transcription

https://github.com/bytedance/piano_transcription


Autoregressive Multi-State Note Model

● Use a single CRNN with the softmax output that predicts multiple note 

states at once (off, onset, sustain, offset, and re-onset)

○ Autoregressive unidirectional RNN → real-time inference

Polyphonic Piano Transcription Using Autoregressive Multi-State Note Model, Taegyun Kwon, Dasaem Jeong, and Juhan Nam, ISMIR, 2020



Demo: Real-Time Polyphonic Piano Transcription

Music and Audio Computing Lab, KAIST (2020)



U-Net based Multi-Instrument AMT

● CNN-based Encoder-Decoder

○ Proposed for image segmentation

○ Use it for “note segmentation”

○ Self-attention for instrument detection

Multi-Instrument Automatic Music Transcription With Self-Attention-Based Instance Segmentation, Yu-Te Wu, Berlin Chen, and Li Su, IEEE TASLP, 2020



Seq-to-Seq Model

● A generic encoder-decoder Transformer with standard decoding 

methods

○ Represents the MIDI output with text-based token sequences

Sequence-to-Sequence Piano Transcription with Transformers, Curtis Hawthorne, Ian Simon, Rigel Swavely, Ethan Manilow, Jesse Engel, ISMIR, 2021



MT3

● The same seq-to-seq model that supports multi-task AMT 

MT3: Multi-Task Multitrack Music Transcription, Josh Gardner, Ian Simon, Ethan Manilow†, Curtis Hawthorne, Jesse Engel, ICML, 2022



MT3

● Add the “program change” token to the output  to change instruments

○ This allows the model to handle an arbitrary number of instruments

MT3: Multi-Task Multitrack Music Transcription, Josh Gardner, Ian Simon, Ethan Manilow†, Curtis Hawthorne, Jesse Engel, ICML, 2022



MT3

MT3: Multi-Task Multitrack Music Transcription, Josh Gardner, Ian Simon, Ethan Manilow†, Curtis Hawthorne, Jesse Engel, ICML, 2022



Datasets

● Piano 

○ MAESTRO: large-scale real performance
■ https://magenta.tensorflow.org/datasets/maestro

○ MAPS: synthesized piano 
■ https://adasp.telecom-paris.fr/resources/2010-07-08-maps-database/

○ Saarland Music Data (SMD): real performance
■ https://resources.mpi-inf.mpg.de/SMD/SMD_MIDI-Audio-Piano-Music.html

https://magenta.tensorflow.org/datasets/maestro
https://adasp.telecom-paris.fr/resources/2010-07-08-maps-database/
https://resources.mpi-inf.mpg.de/SMD/SMD_MIDI-Audio-Piano-Music.html


Datasets

● Multi instrument

Deep-Learning Architectures for Multi-Pitch Estimation: Towards Reliable Evaluation, Christof Weiß, Geoffroy Peeters, Arxiv, 2022

MT3: Multi-Task Multitrack Music Transcription, Josh Gardner, Ian Simon, Ethan Manilow†, Curtis Hawthorne, Jesse Engel, ICML, 2022
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